The Lerch zeta function II. Analytic continuation
نویسندگان
چکیده
منابع مشابه
The Lerch zeta function IV. Hecke operators
This paper studies algebraic and analytic structures associated with the Lerch zeta function. It defines a family of two-variable Hecke operators {Tm : m ≥ 1} given by Tm(f )(a, c) = 1 m ∑m−1 k=0 f ( a+k m ,mc) acting on certain spaces of real-analytic functions, including Lerch zeta functions for various parameter values. The actions of various related operators on these function spaces are de...
متن کاملAnalytic continuation of multiple Hurwitz zeta functions
We use a variant of a method of Goncharov, Kontsevich, and Zhao [Go2, Z] to meromorphically continue the multiple Hurwitz zeta function ζd(s; θ) = ∑ 0<n1<···<nd (n1 + θ1) −s1 · · · (nd + θd)d , θk ∈ [0, 1), to C, to locate the hyperplanes containing its possible poles, and to compute the residues at the poles. We explain how to use the residues to locate trivial zeros of ζd(s; θ).
متن کاملAnalytic Continuation of Multiple Zeta Functions
In this paper we shall define the analytic continuation of the multiple (Euler-Riemann-Zagier) zeta functions of depth d: ζ(s1, . . . , sd) := ∑ 0 1 and ∑d j=1 Re (sj) > d. We shall also study their behavior near the poles and pose some open problems concerning their zeros and functional equations at the end.
متن کاملHypergeometric Series Associated with the Hurwitz-lerch Zeta Function
The present work is a sequel to the papers [3] and [4], and it aims at introducing and investigating a new generalized double zeta function involving the Riemann, Hurwitz, Hurwitz-Lerch and Barnes double zeta functions as particular cases. We study its properties, integral representations, differential relations, series expansion and discuss the link with known results.
متن کاملJoint Value-distribution Theorems on Lerch Zeta-functions. Ii
We give corrected statements of some theorems from [5] and [6] on joint value distribution of Lerch zeta-functions (limit theorems, universality, functional independence). We also present a new direct proof of a joint limit theorem in the space of analytic functions and an extension of a joint universality theorem.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Forum Mathematicum
سال: 2012
ISSN: 1435-5337,0933-7741
DOI: 10.1515/form.2011.048